On the Structure of Hamiltonian Cycles in Cayley Graphs of Finite Quotients of the Modular Group

نویسنده

  • Paul E. Schupp
چکیده

It is a fairly longstanding conjecture that if G is any finite group with IG/ > 2 and if X is any set of generators of G then the Cayley graph T(G : X) should have a Hamiltonian cycle. We present experimental results found by computer calculation that support the conjecture. It turns out that in the case where G is a finite quotient of the modular group the Hamiltonian cycles possess remarkable structural properties. @ 1998-Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley graph associated to a semihypergroup

The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first  we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as  Hamiltonian cycles in this  graph.  Also, by some of examples we will illustrate  the properties and behavior of  these Cayley  graphs, in particulars we show that ...

متن کامل

On trivial ends of Cayley graph of groups

‎In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...

متن کامل

On the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian

In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.

متن کامل

NORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS

Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.  

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 204  شماره 

صفحات  -

تاریخ انتشار 1998